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1
TIME SLICE PROCESSING OF
TESSELLATION AND GEOMETRY
SHADERS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of, and claims
priority benefit to, the United States patent application titled,
“REDISTRIBUTION OF GENERATED GEOMETRIC
PRIMITIVES,” filed on Oct. 4, 2010 and having Ser. No.
12/897,578, which claims priority benefit to the United
States provisional patent application titled, “TWO STAGE
PROCESSING OF INTERNALLY GENERATED GEO-
METRIC PRIMITIVES,” filed on Oct. 5, 2009 and having
Ser. No. 61/248,834.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to generation of
geometric primitives during tessellation of surfaces, and
more specifically to the time slice processing of tessellation
and geometry shaders.

2. Description of the Related Art

In prior graphics systems, primitives were processed in
multiple graphics pipelines concurrently in a single pass. In
the single pass scheme, internally generated primitives
stayed within the same graphics pipeline all the way up to
the rasterization step. Tessellation and geometry shaders can
generate a highly variable and potentially large number of
primitives, which for example might occur when tessellating
a surface into many small primitives with a high level-of-
detail (LOD). This expansion of work, if processed in a
single stage, can cause serialization of the multiple graphics
pipelines due to resource limitations and the serialization
reduces the processing performance. Even if resource limi-
tations do not cause serialization, the variable amount of
work in different graphics pipelines can reduce performance
to that of the slowest graphics pipeline.

One mechanism to avoid processing primitives in a single
pass is to buffer all primitives that are generated in a buffer
(such as the Frame Buffer of a graphics pipeline) and then
executing the primitives stored in the buffer in a second pass.
One drawback to such an implementation is that a significant
amount of memory space is utilized to buffer the generated
primitives. A second drawback is that downstream shaders
remain idle while the primitives are being generated and
buffered. A third drawback is that the communication
between the first pass and the second pass is dependent on
the limited bandwidth of the buffer, thus adversely impact-
ing the overall performance of the system

Accordingly, what is needed in the art is a system and
method for balancing the primitive processing workload
generated by tessellation and geometry shaders for process-
ing by multiple graphics pipelines.

SUMMARY OF THE INVENTION

One embodiment of the present invention sets forth a
method for configuring one or more streaming multiproces-
sors (SPMs) to process surface patches and geometric primi-
tives associated with a graphics object. The method includes
the steps of transmitting one or more surface patches to the
one or more SPMs to be processed in a first processing cycle
during which tessellation data for each of the one or more
surface patches is generated, the tessellation data for each
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2

surface patch including level-of-detail values that define one
or more geometric primitives associated with the surface
patch, determining that the one or more SPMs should begin
processing the one or more geometric primitives, instead of
the one or more surface patches, based on a consumption
level associated with at least one system resource, and
transmitting a first transition state bundle to the one or more
SPMs that causes the one or more SPMs to stop processing
any work associated with the first processing cycle and to
begin processing the one or more geometric primitives in a
second processing cycle.

One advantage of the techniques described herein is that
the techniques described herein allow SPMs to transition
between alpha work and beta work in a seamless manner.
Importantly, because the transition occurs when system
resources are nearing full utilization, no additional buffer
needs to occur to support the transition. In addition, down-
stream shaders, such as the pixel shader, can execute con-
currently while the alpha work and the beta work are being
processed.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not
to be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1 is a block diagram illustrating a computer system
configured to implement one or more aspects of the present
invention;

FIG. 2 is a block diagram of a parallel processing sub-
system for the computer system of FIG. 1, according to one
embodiment of the present invention;

FIG. 3A is a block diagram of a GPC within one of the
PPUs of FIG. 2, according to one embodiment of the present
invention;

FIG. 3B is a block diagram of a partition unit within one
of the PPUs of FIG. 2, according to one embodiment of the
present invention;

FIG. 3C is a block diagram of a portion of the SPM of
FIG. 3A, according to one embodiment of the present
invention; and

FIG. 4 is a conceptual diagram of a graphics processing
pipeline that one or more of the PPUs of FIG. 2 can be
configured to implement, according to one embodiment of
the present invention

FIG. 5A is a diagram of a surface patch that is processed
by a hull shader to produce multiple geometric primitives,
according to one embodiment of the invention;

FIG. 5B is a block diagram of a GPC from FIG. 2,
according to one embodiment of the invention;

FIG. 6 is a block diagram illustrating a more detailed view
of the work distribution unit and the task distribution unit
from FIG. 2, according to one embodiment of the invention;
and

FIG. 7 is a flow diagram of method steps for configuring
the SPMs to operate of surface patches or corresponding
primitives, according to one embodiment of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough understanding of the
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present invention. However, it will be apparent to one of
skill in the art that the present invention may be practiced
without one or more of these specific details. In other
instances, well-known features have not been described in
order to avoid obscuring the present invention.

System Overview

FIG. 1 is a block diagram illustrating a computer system
100 configured to implement one or more aspects of the
present invention. Computer system 100 includes a central
processing unit (CPU) 102 and a system memory 104
communicating via an interconnection path that may include
a memory bridge 105. Memory bridge 105, which may be,
e.g., a Northbridge chip, is connected via a bus or other
communication path 106 (e.g., a HyperTransport link) to an
1/O (input/output) bridge 107. /O bridge 107, which may be,
e.g., a Southbridge chip, receives user input from one or
more user input devices 108 (e.g., keyboard, mouse) and
forwards the input to CPU 102 via path 106 and memory
bridge 105. A parallel processing subsystem 112 is coupled
to memory bridge 105 via a bus or other communication
path 113 (e.g., a PCI Express, Accelerated Graphics Port, or
HyperTransport link); in one embodiment parallel process-
ing subsystem 112 is a graphics subsystem that delivers
pixels to a display device 110 (e.g., a conventional CRT or
LCD based monitor). A system disk 114 is also connected to
1/0 bridge 107. A switch 116 provides connections between
1/0 bridge 107 and other components such as a network
adapter 118 and various add-in cards 120 and 121. Other
components (not explicitly shown), including USB or other
port connections, CD drives, DVD drives, film recording
devices, and the like, may also be connected to I/O bridge
107. Communication paths interconnecting the various com-
ponents in FIG. 1 may be implemented using any suitable
protocols, such as PCI (Peripheral Component Intercon-
nect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu-
nication protocol(s), and connections between different
devices may use different protocols as is known in the art.

In one embodiment, the parallel processing subsystem
112 incorporates circuitry optimized for graphics and video
processing, including, for example, video output circuitry,
and constitutes a graphics processing unit (GPU). In another
embodiment, the parallel processing subsystem 112 incor-
porates circuitry optimized for general purpose processing,
while preserving the underlying computational architecture,
described in greater detail herein. In yet another embodi-
ment, the parallel processing subsystem 112 may be inte-
grated with one or more other system elements, such as the
memory bridge 105, CPU 102, and 1/O bridge 107 to form
a system on chip (SoC).

It will be appreciated that the system shown herein is
illustrative and that variations and modifications are pos-
sible. The connection topology, including the number and
arrangement of bridges, the number of CPUs 102, and the
number of parallel processing subsystems 112, may be
modified as desired. For instance, in some embodiments,
system memory 104 is connected to CPU 102 directly rather
than through a bridge, and other devices communicate with
system memory 104 via memory bridge 105 and CPU 102.
In other alternative topologies, parallel processing subsys-
tem 112 is connected to 1/O bridge 107 or directly to CPU
102, rather than to memory bridge 105. In still other embodi-
ments, [/O bridge 107 and memory bridge 105 might be
integrated into a single chip. Large embodiments may
include two or more CPUs 102 and two or more parallel
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processing systems 112. The particular components shown
herein are optional; for instance, any number of add-in cards
or peripheral devices might be supported. In some embodi-
ments, switch 116 is eliminated, and network adapter 118
and add-in cards 120, 121 connect directly to I/O bridge 107.

FIG. 2 illustrates a parallel processing subsystem 112,
according to one embodiment of the present invention. As
shown, parallel processing subsystem 112 includes one or
more parallel processing units (PPUs) 202, each of which is
coupled to a local parallel processing (PP) memory 204. In
general, a parallel processing subsystem includes a number
U of PPUs, where Uz1. (Herein, multiple instances of like
objects are denoted with reference numbers identifying the
object and parenthetical numbers identifying the instance
where needed.) PPUs 202 and parallel processing memories
204 may be implemented using one or more integrated
circuit devices, such as programmable processors, applica-
tion specific integrated circuits (ASICs), or memory devices,
or in any other technically feasible fashion.

Referring again to FIG. 1, in some embodiments, some or
all of PPUs 202 in parallel processing subsystem 112 are
graphics processors with rendering pipelines that can be
configured to perform various tasks related to generating
pixel data from graphics data supplied by CPU 102 and/or
system memory 104 via memory bridge 105 and bus 113,
interacting with local parallel processing memory 204
(which can be used as graphics memory including, e.g., a
conventional frame buffer) to store and update pixel data,
delivering pixel data to display device 110, and the like. In
some embodiments, parallel processing subsystem 112 may
include one or more PPUs 202 that operate as graphics
processors and one or more other PPUs 202 that are used for
general-purpose computations. The PPUs may be identical
or different, and each PPU may have its own dedicated
parallel processing memory device(s) or no dedicated par-
allel processing memory device(s). One or more PPUs 202
may output data to display device 110 or each PPU 202 may
output data to one or more display devices 110.

In operation, CPU 102 is the master processor of com-
puter system 100, controlling and coordinating operations of
other system components. In particular, CPU 102 issues
commands that control the operation of PPUs 202. In some
embodiments, CPU 102 writes a stream of commands for
each PPU 202 to a pushbuffer (not explicitly shown in either
FIG. 1 or FIG. 2) that may be located in system memory 104,
parallel processing memory 204, or another storage location
accessible to both CPU 102 and PPU 202. PPU 202 reads the
command stream from the pushbuffer and then executes
commands asynchronously relative to the operation of CPU
102.

Referring back now to FIG. 2, each PPU 202 includes an
1/O (input/output) unit 205 that communicates with the rest
of computer system 100 via communication path 113, which
connects to memory bridge 105 (or, in one alternative
embodiment, directly to CPU 102). The connection of PPU
202 to the rest of computer system 100 may also be varied.
In some embodiments, parallel processing subsystem 112 is
implemented as an add-in card that can be inserted into an
expansion slot of computer system 100. In other embodi-
ments, a PPU 202 can be integrated on a single chip with a
bus bridge, such as memory bridge 105 or /O bridge 107.
In still other embodiments, some or all elements of PPU 202
may be integrated on a single chip with CPU 102.

In one embodiment, communication path 113 is a PCI-
EXPRESS link, in which dedicated lanes are allocated to
each PPU 202, as is known in the art. Other communication
paths may also be used. An I/O unit 205 generates packets
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(or other signals) for transmission on communication path
113 and also receives all incoming packets (or other signals)
from communication path 113, directing the incoming pack-
ets to appropriate components of PPU 202. For example,
commands related to processing tasks may be directed to a
host interface 206, while commands related to memory
operations (e.g., reading from or writing to parallel process-
ing memory 204) may be directed to a memory crossbar unit
210. Host interface 206 reads each pushbuffer and outputs
the work specified by the pushbuffer to a front end 212.

Each PPU 202 advantageously implements a highly par-
allel processing architecture. As shown in detail, PPU 202(0)
includes a processing cluster array 230 that includes a
number C of general processing clusters (GPCs) 208, where
Cz1. Each GPC 208 is capable of executing a large number
(e.g., hundreds or thousands) of threads concurrently, where
each thread is an instance of a program. In various appli-
cations, different GPCs 208 may be allocated for processing
different types of programs or for performing different types
of computations. For example, in a graphics application, a
first set of GPCs 208 may be allocated to perform tessella-
tion operations and to produce primitive topologies for
patches, and a second set of GPCs 208 may be allocated to
perform tessellation shading to evaluate patch parameters
for the primitive topologies and to determine vertex posi-
tions and other per-vertex attributes. The allocation of GPCs
208 may vary dependent on the workload arising for each
type of program or computation.

GPCs 208 receive batches of surfaces to be executed via
a work distribution unit 200, which receives commands
defining processing batches from front end unit 212. Pro-
cessing batches include indices of data to be processed, e.g.,
surface (patch) data, primitive data, vertex data, and/or pixel
data, as well as state parameters and commands defining
how the data is to be processed (e.g., what program is to be
executed). Work distribution unit 200 may be configured to
fetch the indices corresponding to the batches, or work
distribution unit 200 may receive the indices from front end
212. Front end 212 ensures that GPCs 208 are configured to
a valid state before the processing specified by the push-
buffers is initiated. The batches are processed by the GPCs
208 to produce tasks of tessellated vertices. A task distribu-
tion unit (TDU) 207 in each GPC 208 receives the tasks and
distributes the tasks to GPCs 208 for processing.

When PPU 202 is used for graphics processing, for
example, the processing workload for each patch is divided
into approximately equal sized tasks to enable distribution of
the tessellation processing to multiple GPCs 208. The work
distribution unit 200 may be configured to produce batches
at a frequency capable of providing batches to multiple
GPCs 208 for processing and the TDU 207 may be config-
ured to output tasks at a frequency capable of providing
tasks to multiple GPCs 208 for processing. By contrast, in
conventional systems, processing is typically performed by
a single processing engine, while the other processing
engines remain idle, waiting for the single processing engine
to complete its tasks before beginning their processing tasks.
In some embodiments of the present invention, portions of
GPCs 208 are configured to perform different types of
processing. For example a first portion may be configured to
perform vertex shading and topology generation, a second
portion may be configured to perform tessellation and geom-
etry shading, and a third portion may be configured to
perform pixel shading in screen space to produce a rendered
image. Intermediate data produced by GPCs 208 may be
stored in buffers to allow the intermediate data to be trans-
mitted between GPCs 208 for further processing.
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Memory interface 214 includes a number D of partition
units 215 that are each directly coupled to a portion of
parallel processing memory 204, where D=1. As shown, the
number of partition units 215 generally equals the number of
DRAM 220. In other embodiments, the number of partition
units 215 may not equal the number of memory devices.
Persons skilled in the art will appreciate that DRAM 220
may be replaced with other suitable storage devices and can
be of generally conventional design. A detailed description
is therefore omitted. Render targets, such as frame buffers or
texture maps may be stored across DRAMs 220, allowing
partition units 215 to write portions of each render target in
parallel to efficiently use the available bandwidth of parallel
processing memory 204.

Any one of GPCs 208 may process data to be written to
any of the DRAMs 220 within parallel processing memory
204. Crossbar unit 210 is configured to route the output of
each GPC 208 to the input of any partition unit 215 or to
another GPC 208 for further processing. GPCs 208 com-
municate with memory interface 214 through crossbar unit
210 to read from or write to various external memory
devices. In one embodiment, crossbar unit 210 has a con-
nection to memory interface 214 to communicate with I/O
unit 205, as well as a connection to local parallel processing
memory 204, thereby enabling the processing cores within
the different GPCs 208 to communicate with system
memory 104 or other memory that is not local to PPU 202.
In the embodiment shown in FIG. 2, crossbar unit 210 is
directly connected with I/O unit 205. Crossbar unit 210 may
use virtual channels to separate traffic streams between the
GPCs 208 and partition units 215.

Again, GPCs 208 can be programmed to execute process-
ing tasks relating to a wide variety of applications, including
but not limited to, linear and nonlinear data transforms,
filtering of video and/or audio data, modeling operations
(e.g., applying laws of physics to determine position, veloc-
ity and other attributes of objects), image rendering opera-
tions (e.g., tessellation shader, vertex shader, geometry
shader, and/or pixel shader programs), and so on. PPUs 202
may transfer data from system memory 104 and/or local
parallel processing memories 204 into internal (on-chip)
memory, process the data, and write result data back to
system memory 104 and/or local parallel processing memo-
ries 204, where such data can be accessed by other system
components, including CPU 102 or another parallel process-
ing subsystem 112.

A PPU 202 may be provided with any amount of local
parallel processing memory 204, including no local memory,
and may use local memory and system memory in any
combination. For instance, a PPU 202 can be a graphics
processor in a unified memory architecture (UMA) embodi-
ment. In such embodiments, little or no dedicated graphics
(parallel processing) memory would be provided, and PPU
202 would use system memory exclusively or almost exclu-
sively. In UMA embodiments, a PPU 202 may be integrated
into a bridge chip or processor chip or provided as a discrete
chip with a high-speed link (e.g., PCI-EXPRESS) connect-
ing the PPU 202 to system memory via a bridge chip or other
communication means.

As noted above, any number of PPUs 202 can be included
in a parallel processing subsystem 112. For instance, mul-
tiple PPUs 202 can be provided on a single add-in card, or
multiple add-in cards can be connected to communication
path 113, or one or more of PPUs 202 can be integrated into
a bridge chip. PPUs 202 in a multi-PPU system may be
identical to or different from one another. For instance,
different PPUs 202 might have different numbers of pro-
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cessing cores, different amounts of local parallel processing
memory, and so on. Where multiple PPUs 202 are present,
those PPUs may be operated in parallel to process data at a
higher throughput than is possible with a single PPU 202.
Systems incorporating one or more PPUs 202 may be
implemented in a variety of configurations and form factors,
including desktop, laptop, or handheld personal computers,
servers, workstations, game consoles, embedded systems,
and the like.

Processing Cluster Array Overview

FIG. 3A is a block diagram of a GPC 208 within one of
the PPUs 202 of FIG. 2, according to one embodiment of the
present invention. Each GPC 208 may be configured to
execute a large number of threads in parallel, where the term
“thread” refers to an instance of a particular program execut-
ing on a particular set of input data. In some embodiments,
single-instruction, multiple-data (SIMD) instruction issue
techniques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techniques are used to support par-
allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to issue
instructions to a set of processing engines within each one of
the GPCs 208. Unlike a SIMD execution regime, where all
processing engines typically execute identical instructions,
SIMT execution allows different threads to more readily
follow divergent execution paths through a given thread
program. Persons skilled in the art will understand that a
SIMD processing regime represents a functional subset of a
SIMT processing regime.

Operation of GPC 208 is advantageously controlled via a
pipeline manager 305 that distributes processing tasks to
streaming multiprocessors (SPMs) 310. Pipeline manager
305 may also be configured to control a work distribution
crossbar 330 by specifying destinations for processed data
output by SPMs 310.

In one embodiment, each GPC 208 includes a number M
of SPMs 310, where M=1, each SPM 310 configured to
process one or more thread groups. Also, each SPM 310
advantageously includes an identical set of functional execu-
tion units (e.g., arithmetic logic units, and load-store units,
shown as Exec units 302 and L.SUs 303 in FIG. 3C) that may
be pipelined, allowing a new instruction to be issued before
a previous instruction has finished, as is known in the art.
Any combination of functional execution units may be
provided. In one embodiment, the functional units support a
variety of operations including integer and floating point
arithmetic (e.g., addition and multiplication), comparison
operations, Boolean operations (AND, OR, XOR), bit-shift-
ing, and computation of various algebraic functions (e.g.,
planar interpolation, trigonometric, exponential, and loga-
rithmic functions, etc.); and the same functional-unit hard-
ware can be leveraged to perform different operations.

The series of instructions transmitted to a particular GPC
208 constitutes a thread, as previously defined herein, and
the collection of a certain number of concurrently executing
threads across the parallel processing engines (not shown)
within an SPM 310 is referred to herein as a “warp” or
“thread group.” As used herein, a “thread group” refers to a
group of threads concurrently executing the same program
on different input data, with one thread of the group being
assigned to a different processing engine within an SPM
310. A thread group may include fewer threads than the
number of processing engines within the SPM 310, in which
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case some processing engines will be idle during cycles
when that thread group is being processed. A thread group
may also include more threads than the number of process-
ing engines within the SPM 310, in which case processing
will take place over consecutive clock cycles. Since each
SPM 310 can support up to G thread groups concurrently, it
follows that up to G*M thread groups can be executing in
GPC 208 at any given time.

Additionally, a plurality of related thread groups may be
active (in different phases of execution) at the same time
within an SPM 310. This collection of thread groups is
referred to herein as a “cooperative thread array” (“CTA”) or
“thread array.” The size of a particular CTA is equal to m*k,
where k is the number of concurrently executing threads in
a thread group and is typically an integer multiple of the
number of parallel processing engines within the SPM 310,
and m is the number of thread groups simultaneously active
within the SPM 310. The size of a CTA is generally
determined by the programmer and the amount of hardware
resources, such as memory or registers, available to the
CTA.

Each SPM 310 contains an L1 cache (not shown) or uses
space in a corresponding [.1 cache outside of the SPM 310
that is used to perform load and store operations. Each SPM
310 also has access to L2 caches within the partition units
215 that are shared among all GPCs 208 and may be used to
transfer data between threads. Finally, SPMs 310 also have
access to off-chip “global” memory, which can include, e.g.,
parallel processing memory 204 and/or system memory 104.
It is to be understood that any memory external to PPU 202
may be used as global memory. Additionally, an [.1.5 cache
335 may be included within the GPC 208, configured to
receive and hold data fetched from memory via memory
interface 214 requested by SPM 310, including instructions,
uniform data, and constant data, and provide the requested
data to SPM 310. Embodiments having multiple SPMs 310
in GPC 208 beneficially share common instructions and data
cached in L1.5 cache 335.

Each GPC 208 may include a memory management unit
(MMU) 328 that is configured to map virtual addresses into
physical addresses. In other embodiments, MMU(s) 328
may reside within the memory interface 214. The MMU 328
includes a set of page table entries (PTEs) used to map a
virtual address to a physical address of a tile and optionally
a cache line index. The MMU 328 may include address
translation lookaside buffers (TLB) or caches which may
reside within multiprocessor SPM 310 or the [.1 cache or
GPC 208. The physical address is processed to distribute
surface data access locality to allow efficient request inter-
leaving among partition units. The cache line index may be
used to determine whether of not a request for a cache line
is a hit or miss.

In graphics and computing applications, a GPC 208 may
be configured such that each SPM 310 is coupled to a texture
unit 315 for performing texture mapping operations, e.g.,
determining texture sample positions, reading texture data,
and filtering the texture data. Texture data is read from an
internal texture .1 cache (not shown) or in some embodi-
ments from the L1 cache within SPM 310 and is fetched
from an .2 cache, parallel processing memory 204, or
system memory 104, as needed. Each SPM 310 outputs
processed tasks to work distribution crossbar 330 in order to
provide the processed task to another GPC 208 for further
processing or to store the processed task in an [.2 cache,
parallel processing memory 204, or system memory 104 via
crossbar unit 210. A setup, rasterization, and preROP (pre-
raster operations) unit SRP 321 is configured to receive data
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from an SPM 310 via the work distribution crossbar 330,
perform primitive setup operations, rasterization, perform
optimizations for color blending, organize pixel color data,
and perform address translations.

It will be appreciated that the core architecture described
herein is illustrative and that variations and modifications
are possible. Any number of processing units, e.g., SPMs
310 or texture units 315, SRPs 321 may be included within
a GPC 208. Further, while only one GPC 208 is shown, a
PPU 202 may include any number of GPCs 208 that are
advantageously functionally similar to one another so that
execution behavior does not depend on which GPC 208
receives a particular processing task. Further, each GPC 208
advantageously operates independently of other GPCs 208
using separate and distinct processing units, [.1 caches, and
SO on.

FIG. 3B is a block diagram of a partition unit 215 within
one of the PPUs 202 of FIG. 2, according to one embodi-
ment of the present invention. As shown, partition unit 215
includes a 1.2 cache 350, a frame buffer (FB) DRAM
interface 355, and a raster operations unit (ROP) 360. [.2
cache 350 is a read/write cache that is configured to perform
load and store operations received from crossbar unit 210
and ROP 360. Read misses and urgent writeback requests
are output by L2 cache 350 to FB DRAM interface 355 for
processing. Dirty updates are also sent to FB 355 for
opportunistic processing. FB 355 interfaces directly with
DRAM 220, outputting read and write requests and receiv-
ing data read from DRAM 220.

The L2 cache 350 may store entries of circular buffers,
circular buffer entries (CBE) 358 are First-In-Random-Out
(FIRO) buffers that are configured to store geometric primi-
tive attribute data, constants and state information, and the
like. A CB manager allocates the CBE 358 to reside in the
system shared L2 cache 350, although the [.2 cache 350 may
flush the CBE 358 to backing store if necessary. Normally
CBEs 358 are assigned a high stickiness value in the [.2
cache 350. More specifically, CBEs 358 are typically
marked “evict last,” which means CBE 358 will not be
evicted from the cache until there is no lower priority data
available for eviction. Requests are issued to the CB man-
ager when a CBE is needed to store primitive attribute data
for a batch of primitives received from the primitive distri-
bution unit 200.

In graphics applications, ROP 360 is a processing unit that
performs raster operations, such as stencil, z test, blending,
and the like, and outputs pixel data as processed graphics
data for storage in graphics memory. In some embodiments
of the present invention, ROP 360 is included within each
GPC 208 instead of partition unit 215, and pixel read and
write requests are transmitted over crossbar unit 210 instead
of pixel fragment data.

The processed graphics data may be displayed on display
device 110 or routed for further processing by CPU 102 or
by one of the processing entities within parallel processing
subsystem 112. Each partition unit 215 includes a ROP 360
in order to distribute processing of the raster operations. In
some embodiments, ROP 360 may be configured to com-
press z or color data that is written to memory and decom-
press z or color data that is read from memory.

Persons skilled in the art will understand that the archi-
tecture described in FIGS. 1, 2, 3A, and 3B in no way limits
the scope of the present invention and that the techniques
taught herein may be implemented on any properly config-
ured processing unit, including, without limitation, one or
more CPUs, one or more multi-core CPUs, one or more
PPUs 202, one or more GPCs 208, one or more graphics or
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special purpose processing units, or the like, without depart-
ing the scope of the present invention.

In embodiments of the present invention, it is desirable to
use PPU 122 or other processor(s) of a computing system to
execute general-purpose computations using thread arrays.
Each thread in the thread array is assigned a unique thread
identifier (“thread ID”) that is accessible to the thread during
its execution. The thread ID, which can be defined as a
one-dimensional or multi-dimensional numerical value con-
trols various aspects of the thread’s processing behavior. For
instance, a thread ID may be used to determine which
portion of the input data set a thread is to process and/or to
determine which portion of an output data set a thread is to
produce or write.

A sequence of per-thread instructions may include at least
one instruction that defines a cooperative behavior between
the representative thread and one or more other threads of
the thread array. For example, the sequence of per-thread
instructions might include an instruction to suspend execu-
tion of operations for the representative thread at a particular
point in the sequence until such time as one or more of the
other threads reach that particular point, an instruction for
the representative thread to store data in a shared memory to
which one or more of the other threads have access, an
instruction for the representative thread to atomically read
and update data stored in a shared memory to which one or
more of the other threads have access based on their thread
IDs, or the like. The CTA program can also include an
instruction to compute an address in the shared memory
from which data is to be read, with the address being a
function of thread ID. By defining suitable functions and
providing synchronization techniques, data can be written to
a given location in shared memory by one thread of a CTA
and read from that location by a different thread of the same
CTA in a predictable manner. Consequently, any desired
pattern of data sharing among threads can be supported, and
any thread in a CTA can share data with any other thread in
the same CTA. The extent, if any, of data sharing among
threads of a CTA is determined by the CTA program; thus,
it is to be understood that in a particular application that uses
CTAs, the threads of a CTA might or might not actually
share data with each other, depending on the CTA program,
and the terms “CTA” and “thread array” are used synony-
mously herein.

FIG. 3C is a block diagram of the SPM 310 of FIG. 3A,
according to one embodiment of the present invention. The
SPM 310 includes an instruction L1 cache 370 that is
configured to receive instructions and constants from
memory via L1.5 cache 335. A warp scheduler and instruc-
tion unit 312 receives instructions and constants from the
instruction [L1 cache 370 and controls local register file 304
and SPM 310 functional units according to the instructions
and constants. The SPM 310 functional units include N exec
(execution or processing) units 302 and P load-store units
(LSU) 303.

SPM 310 provides on-chip (internal) data storage with
different levels of accessibility. Special registers (not shown)
are readable but not writeable by LSU 303 and are used to
store parameters defining each CTA thread’s “position.” In
one embodiment, special registers include one register per
CTA thread (or per exec unit 302 within SPM 310) that
stores a thread ID; each thread ID register is accessible only
by a respective one of the exec unit 302. Special registers
may also include additional registers, readable by all CTA
threads (or by all LSUs 303) that store a CTA identifier, the
CTA dimensions, the dimensions of a grid to which the CTA
belongs, and an identifier of a grid to which the CTA
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belongs. Special registers are written during initialization in
response to commands received via front end 212 from
device driver 103 and do not change during CTA execution.

A parameter memory (not shown) stores runtime param-
eters (constants) that can be read but not written by any CTA
thread (or any LSU 303). In one embodiment, device driver
103 provides parameters to the parameter memory before
directing SPM 310 to begin execution of a CTA that uses
these parameters. Any CTA thread within any CTA (or any
exec unit 302 within SPM 310) can access global memory
through a memory interface 214. Portions of global memory
may be stored in the .1 cache 320.

Local register file 304 is used by each CTA thread as
scratch space; each register is allocated for the exclusive use
of one thread, and data in any of local register file 304 is
accessible only to the CTA thread to which it is allocated.
Local register file 304 can be implemented as a register file
that is physically or logically divided into P lanes, each
having some number of entries (where each entry might
store, e.g., a 32-bit word). One lane is assigned to each of the
N exec units 302 and P load-store units LSU 303, and
corresponding entries in different lanes can be populated
with data for different threads executing the same program
to facilitate SIMD execution. Different portions of the lanes
can be allocated to different ones of the G concurrent thread
groups, so that a given entry in the local register file 304 is
accessible only to a particular thread. In one embodiment,
certain entries within the local register file 304 are reserved
for storing thread identifiers, implementing one of the spe-
cial registers.

Shared memory 306 is accessible to all CTA threads
(within a single CTA); any location in shared memory 306
is accessible to any CTA thread within the same CTA (or to
any processing engine within SPM 310). Shared memory
306 can be implemented as a shared register file or shared
on-chip cache memory with an interconnect that allows any
processing engine to read from or write to any location in the
shared memory. In other embodiments, shared state space
might map onto a per-CTA region of off-chip memory, and
be cached in L1 cache 320. The parameter memory can be
implemented as a designated section within the same shared
register file or shared cache memory that implements shared
memory 306, or as a separate shared register file or on-chip
cache memory to which the LSUs 303 have read-only
access. In one embodiment, the area that implements the
parameter memory is also used to store the CTAID and grid
1D, as well as CTA and grid dimensions, implementing
portions of the special registers. Each LSU 303 in SPM 310
is coupled to a unified address mapping unit 352 that
converts an address provided for load and store instructions
that are specified in a unified memory space into an address
in each distinct memory space. Consequently, an instruction
may be used to access any of the local, shared, or global
memory spaces by specifying an address in the unified
memory space.

The L1 Cache 320 in each SPM 310 can be used to cache
private per-thread local data and also per-application global
data. In some embodiments, the per-CTA shared data may be
cached in the [.1 cache 320. The LSUs 303 are coupled to
a uniform L1 cache 371, the shared memory 306, and the .1
cache 320 via a memory and cache interconnect 380. The
uniform L1 cache 371 is configured to receive read-only
data and constants from memory via the [.1.5 Cache 335.

FIG. 4 is a conceptual diagram of a graphics processing
pipeline 400, that one or more of the PPUs 202 of FIG. 2 can
be configured to implement, according to one embodiment
of the present invention. For example, one of the SPMs 310
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may be configured to perform the functions of one or more
of a vertex processing unit 415, a geometry processing unit
425, and a fragment processing unit 460. The functions of
data assembler 410, primitive assembler 420, rasterizer 455,
and raster operations unit 465 may also be performed by
other processing engines within a GPC 208 and a corre-
sponding partition unit 215. Alternately, graphics processing
pipeline 400 may be implemented using dedicated process-
ing units for one or more functions.

Data assembler 410 processing unit collects vertex data
for high-order surfaces, primitives, and the like, and outputs
the vertex data, including the vertex attributes, to vertex
processing unit 415. Vertex processing unit 415 is a pro-
grammable execution unit that is configured to execute
vertex shader programs, lighting and transforming vertex
data as specified by the vertex shader programs. For
example, vertex processing unit 415 may be programmed to
transform the vertex data from an object-based coordinate
representation (object space) to an alternatively based coor-
dinate system such as world space or normalized device
coordinates (NDC) space. Vertex processing unit 415 may
read data that is stored in L1 cache 320, parallel processing
memory 204, or system memory 104 by data assembler 410
for use in processing the vertex data.

Primitive assembler 420 receives vertex attributes from
vertex processing unit 415, reading stored vertex attributes,
as needed, and constructs graphics primitives for processing
by geometry processing unit 425. Graphics primitives
include triangles, line segments, points, and the like. Geom-
etry processing unit 425 is a programmable execution unit
that is configured to execute geometry shader programs,
transforming graphics primitives received from primitive
assembler 420 as specified by the geometry shader pro-
grams. For example, geometry processing unit 425 may be
programmed to subdivide the graphics primitives into one or
more new graphics primitives and calculate parameters,
such as plane equation coefficients, that are used to rasterize
the new graphics primitives.

In some embodiments, geometry processing unit 425 may
also add or delete elements in the geometry stream. Geom-
etry processing unit 425 outputs the parameters and vertices
specifying new graphics primitives to a viewport scale, cull,
and clip unit 450. Geometry processing unit 425 may read
data that is stored in parallel processing memory 204 or
system memory 104 for use in processing the geometry data.
Viewport scale, cull, and clip unit 450 performs clipping,
culling, and viewport scaling and outputs processed graphics
primitives to a rasterizer 455.

Rasterizer 455 scan converts the new graphics primitives
and outputs fragments and coverage data to fragment pro-
cessing unit 460. Additionally, rasterizer 455 may be con-
figured to perform z culling and other z-based optimizations.

Fragment processing unit 460 is a programmable execu-
tion unit that is configured to execute fragment shader
programs, transforming fragments received from rasterizer
455, as specified by the fragment shader programs. For
example, fragment processing unit 460 may be programmed
to perform operations such as perspective correction, texture
mapping, shading, blending, and the like, to produce shaded
fragments that are output to raster operations unit 465.
Fragment processing unit 460 may read data that is stored in
parallel processing memory 204 or system memory 104 for
use in processing the fragment data. Fragments may be
shaded at pixel, sample, or other granularity, depending on
the programmed sampling rate.

Raster operations unit 465 is a processing unit that
performs raster operations, such as stencil, z test, blending,
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and the like, and outputs pixel data as processed graphics
data for storage in graphics memory. The processed graphics
data may be stored in graphics memory, e.g., parallel pro-
cessing memory 204, and/or system memory 104, for dis-
play on display device 110 or for further processing by CPU
102 or parallel processing subsystem 112. In some embodi-
ments of the present invention, raster operations unit 465 is
configured to compress z or color data that is written to
memory and decompress z or color data that is read from
memory.

Although the method steps are described in conjunction
with the systems of FIGS. 1, 2, 3A, 3B, and 3C, persons
skilled in the art will understand that any system configured
to perform the method steps, in any order, is within the scope
of the inventions.

Redistribution of Generated Geometric Primitives

FIG. 5Ais a diagram of a surface 500 that is processed by
a hull shader to produce multiple geometric primitives,
according to one embodiment of the invention. The output of
hull shader is a set of level-of-detail (LOD) values for the
surface 500 that specify the number of geometric primitives
that are produced by a domain shader when the surface 500
is tessellated. The surface 500 may be divided into several
exterior regions 501, 502, 503, and 504 and an interior
region 505 that are associated with different LOD values. In
particular, an LOD value may be specified for the interior
region 505 and different LOD values may be specified for
each one of the exterior regions or outside edges of the
exterior regions. As the LOD values increase, more vertices
are produced by the tessellator to generate more geometric
primitives.

A single surface patch 500 may be processed by a SPM
303 executing a hull shader and a tessellatror to produce a
number of vertices that exceeds the resource limit of the
SPM 310. The hull shader computes the LODs, and the
tessellator generates the tessellation tasks and tessellated
vertices. To complete tessellation of the surface patch 500 a
domain shader is executed for each tessellated vertex. Spe-
cifically, a processing thread is executed for each vertex and
the number of attributes for each vertex of the tessellated
surface patch 500 may exceed the storage capacity of a
single SPM 310. When the resources are exceeded, execu-
tion of the domain shader to process the vertices is serial-
ized. Serialization may be avoided by redistributing the
generated geometric primitives (vertices) for processing by
multiple SPMs 310.

Tessellation and geometry shaders are the types of shaders
that may generate primitives when executed by the SPMs
310. In order to balance the increased processing loads when
surface patches are expanded into different quantities of
geometric primitives by the hull shaders, the SPMs 310
operate in a time sliced mode. In the time sliced mode, the
SPMs 310 first process the surface patches and then, upon
receiving a transition indication from the work distribution
unit 200, transition to processing the geometric primitives.
In operation, the SPMs 310 process batches of one or more
surface patches to generate work units called tasks, which
are forwarded to the task distribution unit 207. The tasks
describe a limited number of geometric primitives that can
be processed later by the SPMs 310 without exceeding
resource limits and thus causing stalls and serialization. The
tasks are transmitted by the task distribution unit 207 to the
SPMs 310, where the tasks are processed when the SPMs
310 receive the transition indication from the work distri-
bution unit 200. The collected tasks may be reordered in API
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order (the order that the application presented the surfaces
for processing) prior to being transmitted by the task distri-
bution unit 207 to the SPMs 310. Geometric primitives
processed by the SPMs 310 are then forwarded to the
rasterizers.

In order to perform tessellation, the SPMs 310, in a first
(alpha) processing cycle, are configured to execute vertex
shaders and tessellation control shader programs, e.g., hull
shaders, and next the SPMs 310, in a second (beta) process-
ing cycle, are configured to execute tessellation evaluation
shader programs and geometry shader programs, e.g.,
domain shaders and geometry shaders. An application pro-
gram or device driver 103 provides surface patch descrip-
tions. For the first processing cycle, the SPMs 310 receive
surface patch descriptions and generate geometric primi-
tives, such as cubic triangle primitives defined by ten control
points, and tessellation parameters such as LOD values.
Geometric primitives and tessellation parameters are then
routed to alpha circular buffers (stored in CBEs 358) in the
L2 cache 350 until the primitives and parameters are pro-
cessed by the SPMs 310 in the second processing cycle.

In one embodiment, where tessellation is not performed,
for the first processing cycle, the SPMs 310 receive input
primitives such as triangles, lines or points. In such an
embodiment, vertex shaders are executed on the input primi-
tives in the first processing cycle and geometry shaders are
executed on the output of the first processing cycle in the
second processing cycle.

FIG. 5B is a block diagram of a GPC 208 from FIG. 2,
according to one embodiment of the invention. A TGA unit
510 within each SPM 310 breaks the generated geometric
primitives produced from a surface into smaller batches
called “tasks™ for redistribution. Each task may represent M
vertices of (post-tessellation) generated geometric primi-
tives and a single surface may produce multiple tasks. The
tasks are sized based on the parallel processing capability
and resource limitations of an SPM 310, so that each vertex
is processed by one thread in a thread group.

More specifically, a particular task may be distributed to
an SPM 310 that is in a different GPC 208 than the SPM 310
that produced the tessellated vertices in the task. A task
distribution unit (collector block) 207 receives the tasks and,
in some embodiments, may be configured with assistance
with other units (not shown) to reorder the tasks into the API
order in which the surfaces were distributed by the work
distribution unit 200 to SPMs 310. More specifically,
another unit locally reorders the tasks that are output by each
SPM 310 and the task distribution unit 207 globally reorders
the per-GPC tasks output by GPCs 208 between the different
GPCs 208. For example, when the work distribution unit
200 distributes the patches in a round-robin manner, the task
distribution unit 207 restores the patches (now tasks) to the
order before to the round-robin distribution. The pipeline
manager 305 provides the task distribution unit 207 with the
API order information that is used by the task distribution
unit 207 to reorder the tasks and is combined with informa-
tion that is sent directly from the work distribution unit 200
to the task distribution unit 207.

Surface data 555, representing the surface patches may be
stored in L1 cache 320, as shown in FIG. 5B, and read by
the SPMs 310 in the first processing cycle. Pipeline manager
305 may be configured to provide locations of surface data
555 to each SPM 310 to distribute the surface patches for
processing. Tessellation data, representing the graphics
primitives output by the SPMs 310 is written to circular
buffer entries (CBEs 358) in the L2 cache 350. In one
embodiment, the tessellation data is first written to the L1
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cache (not shown) and then copied to the CBEs 358 in the
L2 cache 350. The tessellation data is then fetched from the
CBEs 358 by the SPMs 310 in the second processing cycle
and may be stored in L1 cache 320 as tessellation data 570.

Pipeline manager 305 provides work distribution crossbar
330 and crossbar unit 210 with routing information that is
needed to distribute tasks to the inputs of SPMs 310 over a
beta channel. A task may be distributed to an SPM 310 that
is a different GPC 208 through the crossbar unit 210 and task
distribution unit 207. In some embodiments of the present
invention, such as the embodiment shown in FIG. 5B,
tessellation data 570 is routed through work distribution
crossbar 330 and crossbar unit 210 as the tessellation data
570 is written to the L2 cache 350 by SPMs 310 in the first
processing cycle and fetched from the .2 cache 350 and
stored in the [.1 cache by SPMs 310 in the second processing
cycle. In other embodiments of the present invention, indi-
ces corresponding to the location of each task that includes
a set of vertices of generated graphics primitives are routed
through work distribution crossbar 330 crossbar unit 210
and task distribution unit 207 to distribute the tessellation
data 570 output by the SPMs 310 in the first processing cycle
to the inputs of SPMs 310 in the second processing cycle.

Importantly, tessellation data 570 is stored in L1 cache
320 and/or L2 cache 350 rather than being stored PP
memory 204, reducing the number of clock cycles needed to
read and write tessellation data 570. In particular, the
tessellation data 570 may be stored in the L1 cache 320
when the tessellation data 570 is accessed by SPMs 310 in
the first set 550 or the second set 560. The tessellation data
570 may be written to a circular buffer entry (CBE) 358 that
is stored in the 1.2 cache 350 after processing by the SPMs
310 is completed and the TGA 510 has generated tasks. The
tessellation data 570 may be read from the CBE 358 in the
L2 cache 350 and stored in the [.1 cache 320 for processing
by SPMs 310 in the second processing cycle. In one embodi-
ment, each SPM 310 in the first set 550 may write a single
CBE 358 that includes the tessellation data generated for a
single surface patch. The single CBE 358 may then be read
by multiple SPMs 310 in the second processing cycle to
process each task that includes generated geometric primi-
tives for the single surface patch. Note that a single task may
include multiple patches.

For example, for geometry shading each task may be
defined using a start and end values corresponding to
particular offsets or positions within the CBE 358. For
tessellation, the locations of tessellated vertices for a task
may be conveyed in the tessellate version of the original
surface 500. Each SPM 310 in the second processing cycle
reads and processes a portion of the CBE 348 based on the
task-specific start and end values. When primitive instancing
is used by a geometry shader program, generated primitives
may be instanced by simply duplicating the generated geo-
metric primitive in one or more tasks. The tessellation data
of instanced generated geometric primitives may be read by
one or more SPMs 310 in the second processing cycle to
produce copies of each instanced generated geometric primi-
tive.

FIG. 6 is a block diagram illustrating a more detailed view
of the work distribution unit 200 and the task distribution
unit 207 from FIG. 2, according to one embodiment of the
invention. As shown, the work distribution unit 200 includes
a decision block 602 and counters 604, and the task distri-
bution unit 207 includes a state bundle first-in-first-out
(FIFO) memory 606 and a token FIFO memory 608.

As previously described herein, in order to balance the
increased processing loads when surface patches are
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expanded into different quantities of geometric primitives by
the hull shaders, the SPMs 310 operate in a time sliced
mode. In the time sliced mode, the SPMs 310, in the alpha
processing cycle (referred to herein as “the first processing
cycle™), process surface patches transmitted to the SPMs
310 by the work distribution unit 200. In the beta processing
cycle (referred to herein as “the second processing cycle”™),
the SPMs 310 process the tasks that are generated by the
SPMs 310 during the first processing cycle.

In operation, the work distribution unit 200 transmits
surface patches along with state information needed to
process those surface patches to the SPMs 310. The SPMs
310 generate tasks from the processed surface patches, and
the generated tasks are transmitted to the task distribution
unit 207 for collection until the tasks can be distributed to
the SPMs 310. In addition, the work distribution unit 200
transmits state information to the task distribution unit 207
that is needed to process the tasks generated by the SPMs
310. The state information that is needed to process the tasks
is stored in the state bundle FIFO 606.

In one embodiment, each unit of work transmitted by the
work distribution unit 200 is associated with a work token.
The work token identifies that particular unit of work as well
as any work derived from that unit of work, i.e., tasks
generated from a surface patch associated with a particular
work token would also be associated with that work token.
The work tokens are transmitted by the work distribution
unit 200 to the SPMs 310 along with the associated units of
work and are also transmitted to the task distribution unit
207 for storage in the token FIFO 608. The task distribution
unit 207 is configured to match tasks generated by the SPMs
310 with corresponding state information stored in the state
bundle FIFO 606 based on the work tokens.

To support the time sliced mode, where the SPMs 310
transition between the alpha processing cycle and the beta
processing cycle, the decision logic 602 within the work
distribution unit 200 determines when the SPMs 310 should
transition from processing surface patches to processing the
generated tasks. Such a determination is based, primarily, on
the consumption level of various memory resources
included in the SPMs 310, the L1 cache 320 and the L2
cache 350. More specifically, upon transmitting a set of
surface patches to the SPMs 310 for processing, the decision
logic 602 included in the work distribution unit 200 esti-
mates the consumption levels of FIFOs included in the
SPMs 310 and the CBE 358 when the set of surface patches
would be processed. The consumption levels are determined
based on counters 604 that indicate the estimated consump-
tion of corresponding system resources, where each counter
604 corresponds to a different system resource. If any of the
consumption levels exceeds a pre-determined threshold,
then the decision logic 602 determines that, to avoid poten-
tial deadlocks due to running out of resources, the SPMs 310
should transition from processing patches (i.e., alpha work)
to processing generated tasks (i.e., beta work). Persons
skilled in the art would readily recognize that any system
resource can be tracked by the decision logic 602 in such a
manner to determine when the SPMs should transition. In
one example, one FIFO in the TGA 510 includes L.ODs
computed for each patch. If a current set of patches would
cause the FIFO to reach a pre-determined consumption
level, then the decision logic 602 would determine that the
SPMs 310 should transition from processing patches to
processing generated tasks.

The decision logic 602 also takes the number of state
changes into account when determining whether the SPMs
310 should transition from processing surface patches to
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processing the generated tasks. More specifically, when new
state information is transmitted to the SPMs 310 and,
consequently to the task distribution unit 207, the decision
logic 602 determines whether the number of state bundles
that have been transmitted exceeds a pre-determined thresh-
old. If the number of state bundles exceeds the threshold,
then the decision logic 602 determines that the SPMs 310
should transition from processing patches to processing
generated tasks.

When the decision block 602 determines that the SPMs
310 should transition from processing surface patches to
processing generated tasks, a transition state bundle is
transmitted to the SPMs 310. The transition state bundle
indicates to the SPMs 310 to stop accepting surface patches
(i.e., alpha work) from the alpha channel and to begin
processing generated tasks (i.e., beta work) from the beta
channel. The task distribution unit 207 is configured to
transmit the generated tasks and corresponding state infor-
mation to the SPMs 310 over the beta channel. The SPMs
310, then, begin accepting work received over the beta
channel and process the generated tasks. In one embodi-
ment, the TGA 510 may continue to generate tasks from
surface patches that were processed by the SPMs 310 before
the transition occurred based on the information stored in
one or more input FIFOs of the TGA 510. It is important to
note that before an SPM 310 can transition from processing
surface patches to processing tasks, any memory space in the
L1 cache used for processing patches in the first processing
cycle needs to be freed. To free the memory space, the TGA
510 reads the LOD and the patch information from the L1
cache and stores the information in one or more input FIFOs.

The work distribution unit 200 also transmits a second
transition state bundle that indicates to the SPMs 310 to
revert to processing alpha work from the alpha channel once
the tasks transmitted by the task distribution unit 207 are
completely processed. In such a manner, the work distribu-
tion unit 200 causes, via transition state bundles, the SPMs
310 to transition between alpha work and beta work for
efficient processing and without causing resource deadlocks.

In one embodiment, the graphics pipeline is set up such
that the vertex shader is recognized as the alpha stage and
the geometry shader is recognized as the beta stage. The
techniques of generating tasks from a unit of work in the
alpha stage in one processing cycle and then distributing
those tasks to the same processors in a second processing
cycle described herein can be applied in such an embodi-
ment as well.

FIG. 7 is a flow diagram of method steps for configuring
the SPMs to operate on surface patches or corresponding
primitives, according to one embodiment of the invention.
Although the method steps are described in conjunction with
the systems for FIGS. 1-6, persons skilled in the art will
understand that any system configured to perform the
method steps, in any order, is within the scope of the
invention.

At step 702, the work distribution unit 200 transmits one
or more surface patches and any corresponding state infor-
mation to the SPMs 310 for processing. At step 704, the
decision logic 602 included in the work distribution unit 200
estimates the consumption levels of memory, such as FIFOs
included in the SPMs 310 and the CBE 358, when the set of
surface patches would be processed. The consumption levels
are determined based on counters 604 that indicate the
estimated consumption of corresponding system resources,
where each counter 604 corresponds to a different system
resource.
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At step 706, the decision logic 602 determines whether
any consumption level exceeds a pre-determined threshold.
If the consumption level does not exceed a pre-determined
threshold, then the decision logic 602, at step 708, deter-
mines the number of state bundles that have been transmit-
ted exceeds a pre-determined threshold. If the number of
state bundles does not exceed a pre-determined threshold,
then the method 700 proceeds to step 702, where new
surface patches are transmitted to the SPMs 310. If, how-
ever, the number of state bundles does exceed a pre-
determined threshold, then the method 700 proceeds to step
710, where the work distribution unit 200 transmits a first
transition state bundle to the SPMs 310. Persons skilled in
the art would recognize that any other technically feasible
thresholds can be tested by the decision logic 602 other than
the consumption level and the number of state bundles.

By redistributing geometric primitives generated by the
tessellation shaders the per-vertex processing is balanced
across multiple graphics pipelines in the SPMs 310. The
tessellation data produced by a single surface patch is
divided into tasks that do not exceed the resource limits of
an SPM 310. Therefore, the performance of the tessellation
shaders is improved. Performance of the geometry shaders
is improved since the processing for geometric primitive
instancing is also distributed across the SPMs 310. The
transition state bundle indicates to the SPMs 310 to stop
accepting surface patches (i.e., alpha work) from the alpha
channel and to begin processing generated tasks (i.e., beta
work) from the beta channel.

Next, at step 712, the work distribution unit 200 also
transmits a second transition state bundle that indicates to
the SPMs 310 to revert to processing alpha work from the
alpha channel once the tasks transmitted by the task distri-
bution unit 207 are completely processed. After all beta
work is completed, the SPMs revert to processing alpha
work. In this manner, the amount of resources spent on alpha
work and beta work is determined dynamically at run-time
by the nature of the workload. At low LODs, there is little
beta processing, and alpha and beta are about equal, so the
amount of resources spent on each is about equal. At high
LODs, beta work is much greater than alpha work, and so
much more resources are spent on beta.

Referring back to step 706 now, if the consumption level
does exceed a pre-determined threshold, then the method
proceeds directly to step 710 previously described herein.

Advantageously, the techniques described herein allow
SPMs to transition between alpha work and beta work in a
seamless manner. Importantly, because the transition occurs
when system resources are nearing full utilization, no addi-
tional buffer needs to occur to support the transition. In
addition, downstream shaders, such as the pixel shader, can
execute concurrently while the alpha work and the beta work
are being processed.

One embodiment of the invention may be implemented as
a program product for use with a computer system. The
program(s) of the program product define functions of the
embodiments (including the methods described herein) and
can be contained on a variety of computer-readable storage
media. Illustrative computer-readable storage media
include, but are not limited to: (i) non-writable storage
media (e.g., read-only memory devices within a computer
such as CD-ROM disks readable by a CD-ROM drive, flash
memory, ROM chips or any type of solid-state non-volatile
semiconductor memory) on which information is perma-
nently stored; and (ii) writable storage media (e.g., floppy
disks within a diskette drive or hard-disk drive or any type
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of solid-state random-access semiconductor memory) on
which alterable information is stored.

The invention has been described above with reference to
specific embodiments. Persons skilled in the art, however,
will understand that various modifications and changes may
be made thereto without departing from the broader spirit
and scope of the invention as set forth in the appended
claims. The foregoing description and drawings are, accord-
ingly, to be regarded in an illustrative rather than a restrictive
sense.

What is claimed is:

1. A method for configuring a streaming multiprocessor to
process data in first and second processing cycles, the
method comprising:

transmitting a first set of input primitives to the streaming

multiprocessor during a first processing cycle for the
streaming multiprocessor to process the first set of
input primitives to produce geometric primitives there-
from;

determining, based on a consumption level associated

with at least one system resource exceeding a threshold
level, that the streaming multiprocessor should transi-
tion, prior to completion of the first processing cycle,
from the first processing cycle to a second processing
cycle during which the streaming multiprocessor pro-
cesses the geometric primitives produced from the first
set of input primitives, wherein the first processing
cycle and the second processing cycle are consecutive
processing cycles of a graphics processing pipeline;
and

transmitting a first transition state bundle to the streaming

multiprocessor to cause the streaming multiprocessor
to stop the first processing cycle prior to completion of
the first processing cycle and start the second process-
ing cycle to process the geometric primitives.

2. The method of claim 1, further comprising estimating
the consumption level based on a counter indicating the
number of memory spaces that are available in the at least
one system resource and on the number of memory spaces
that are to be consumed when the first set of input primitives
is processed by the streaming multiprocessor.

3. The method of claim 1, wherein the first set of input
primitives comprise one or more surface patches, and, in the
first processing cycle, tessellation data for each of the one or
more surface patches is generated, the tessellation data for
each surface patch including level-of-detail values that
define the geometric primitives.

4. The method of claim 3, wherein the at least one system
resource comprises a circular buffer that is included in a
level-two cache coupled to the streaming multiprocessor and
is configured to store at least a portion of the tessellation
data.

5. The method of claim 4, further comprising, after the
first transition state bundle is transmitted to the streaming
multiprocessor, copying the tessellation data from the cir-
cular buffer to a level-one cache coupled to the streaming
multiprocessor, wherein the streaming multiprocessor is
configured to access the tessellation data in the level-one
cache when processing the geometric primitives.

6. The method of claim 3, wherein the at least one system
resource comprises a first-in-first-out memory that is
included in the streaming multiprocessor and is configured
to store the level-of-detail values that define geometric
primitives associated with a first surface patch.

7. The method of claim 1, further comprising, after
transmitting the first transition bundle, transmitting a second
transition state bundle to the streaming multiprocessor, and
transmitting a second set of input primitives to the streaming
multiprocessor for processing.
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8. The method of claim 7, wherein, upon receiving the
second transition state bundle, the streaming multiprocessor
is configured to finish processing the geometric primitives
before processing the second set of input primitives.

9. The method of claim 1, wherein determining that the
streaming multiprocessor should begin processing the gen-
erated geometric primitives is further based on a number of
state bundles that are transmitted to the streaming multipro-
cessor, wherein the first transition bundle is transmitted to
the streaming multiprocessor when the number of state
bundles exceeds a pre-determined threshold.

10. The method of claim 1, further comprising determin-
ing that a number of state bundles transmitted to the stream-
ing multiprocessor exceeds a second threshold level, and, in
response, transmitting the first transition state bundle.

11. A graphics processing unit, comprising:

a streaming multiprocessor, and

a work distribution processor coupled to the streaming

multiprocessor and configured to:

transmit a first set of one or more surface patches to the
streaming multiprocessor during a first processing
cycle for the streaming multiprocessor to produce
tessellation data for each of the one or more surface
patches, the tessellation data for each surface patch
including level-of-detail values that define geometric
primitives associated with the surface patch;

determine, based on a consumption level associated
with at least one system resource exceeding a thresh-
old level, that the streaming multiprocessor should
transition, prior to completion of the first processing
cycle, from the first processing cycle to a second
processing cycle during which the streaming multi-
processor processes the geometric primitives asso-
ciated with each of the one or more surface patches,
wherein the first processing cycle and the second
processing cycle are consecutive processing cycles
of a graphics processing pipeline; and

transmit a first transition state bundle to the streaming
multiprocessor that causes the streaming multipro-
cessor to stop the first processing cycle prior to
completion of the first processing cycle and start the
second processing cycle to process the geometric
primitives.

12. The graphics processing unit of claim 11, wherein the
work distribution processor is further configured to estimate
the consumption level based on a counter indicating the
number of memory spaces that are available in the at least
one system resource and on the number of memory spaces
that are to be consumed when the first set of one or more
surface patches is processed by the streaming multiproces-
sor.

13. The graphics processing unit of claim 11, wherein the
at least one system resource comprises a circular buffer that
is included in a level-two cache coupled to the streaming
multiprocessor and is configured to store at least a portion of
the tessellation data.

14. The graphics processing unit of claim 13, wherein,
after the first transition state bundle is transmitted to the
streaming multiprocessor, the streaming multiprocessor cop-
ies the tessellation data from the circular buffer to a level-
one cache coupled to the streaming multiprocessor, wherein
the streaming multiprocessor is configured to access the
tessellation data in the level-one cache when processing the
geometric primitives.

15. The graphics processing unit of claim 11, wherein the
at least one system resource comprises a first-in-first-out
memory that is included in the streaming multiprocessor and
is configured to store the level-of-detail values that define
geometric primitives associated with a first surface patch.
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16. The graphics processing unit of claim 11, wherein the
work distribution processor is further configured to, after
transmitting the first transition bundle, transmit a second
transition state bundle to the streaming multiprocessor, and
transmit a second set of surface patches to the streaming
multiprocessor for processing.

17. The graphics processing unit of claim 16, wherein,
upon receiving the second transition state bundle, the
streaming multiprocessor is configured to finish processing
the geometric primitives before processing the second set of
surface patches.

18. The graphics processing unit of claim 11, wherein
determining that the streaming multiprocessor should begin
processing the geometric primitives is further based on a
number of state bundles that are transmitted to the streaming
multiprocessor, wherein the first transition bundle is trans-
mitted to the streaming multiprocessor when the number of
state bundles exceeds a pre-determined threshold.

19. The graphics processing unit of claim 11, wherein the
threshold level reflects a level of buffer consumption within
the streaming multiprocessor.

20. The graphics processing unit of claim 11, wherein the
work distribution processor is further configured to deter-
mine that a number of state bundles transmitted to the
streaming multiprocessor exceeds a second threshold level,
and, in response, transmit the first transition state bundle.

21. The graphics processing unit of claim 11, wherein the
first processing cycle comprises executing vertex shaders,
and the second processing cycle comprises executing at least
one of domain shaders and geometry shaders.

22. The graphics processing unit of claim 11, wherein the
first processing cycle is implemented by a vertex processing
unit and a primitive assembler.

23. A system, comprising:

a streaming multiprocessor;

at least one system resource; and

a work distribution processor configured to:

transmit one or more surface patches to the streaming
multiprocessor during a first processing cycle for the
streaming multiprocessor to process the one or more
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surface patches to produce tessellation data for each
of the one or more surface patches, the tessellation
data for each surface patch including level-of-detail
values that define geometric primitives associated
with the surface patch,

determine, based on a consumption level associated
with at least one system resource exceeding a thresh-
old level, that the streaming multiprocessor should
transition, prior to completion of the first processing
cycle, from the first processing cycle to a second
processing cycle during which the streaming multi-
processor processes the geometric primitives asso-
ciated with each of the one or more surface patches,
wherein the first processing cycle and the second
processing cycle are consecutive processing cycles
of a graphics processing pipeline, and

transmit a first transition state bundle to the streaming
multiprocessor that causes the streaming multipro-
cessor to stop the first processing cycle prior to
completion of the first processing cycle and start the
second processing cycle to process the geometric
primitives.

24. The system of claim 23, wherein the work distribution
processor is further configured to estimate the consumption
level based on a counter indicating the number of memory
spaces that are available in the at least one system resource
and on the number of memory spaces that are to be con-
sumed when the first set of surface patches is processed by
the streaming multiprocessor.

25. The system of claim 23, wherein the at least one
system resource comprises a circular buffer that is included
in a level-two cache coupled to the streaming multiprocessor
and is configured to store at least a portion of the tessellation
data.

26. The system of claim 23, wherein the work distribution
processor is further configured to determine that a number of
state bundles transmitted to the streaming multiprocessor
exceeds a second threshold level, and, in response, transmit
the first transition state bundle.
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